Draft: Quantifying nitrogen status of rice using low altitude UAV-mounted system and object-oriented segmentation methodology
نویسندگان
چکیده
Nitrogen deficiency can seriously reduce yield, while over-fertilization can result problems such as excess nutrient runoff and groundwater pollution. Hence, efficient methods for assessing crop nitrogen status are needed to enable more optimal fertilizer management. The ability to quantify the different nitrogen application rates by crops using digital images taken from an unmanned aerial vehicle (UAV) was investigated in comparison with ground-based hyperspectral reflectance and chlorophyll content data from 140 plots on a managed field. This research utilized new UAV system, comprised of remote-controlled helicopter (Hercules II) and digital camera (EOS 30D), was used to characterize spatial and temporal variation in crop production. Digital information was extracted based on an object-oriented segmentation method, and the color parameter was reduced and represented using principal component analysis (PCA). An estimating model was established after analyzing the relationship between the optimal color parameter and ground-based measurements. Model testing demonstrated that unknown samples could be associated with the controlled nitrogen application rates (0, 60, 90, and 120 kg N·hm): % % 91.6 ; N1( 60 kg N·hm % ): 70.83 ; N2( 90 kg N·hm % ): 86.7 ; N3( 120 kg N·hm % ): 95 . Overall, this result proved to provide a cost-effective and accurate way and the UAV was an exploratory and predictive tool when applied to quantify different status of nitrogen. In addition, it indicated that the application of digital image from UAV to the problem of estimating different nitrogen rates is promising.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملMonocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles
The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained....
متن کاملUav for Mapping —low Altitude Photogrammetric Survey
Two kinds of platform are accepted for mapping UAV system. One is remotely-piloted aircraft. Another is unmanned helium airship. A super-wide-angle camera is constructed by four digital cameras, mounted in different optical axis directions. A high accuracy calibration method is used to make compensation for the deformed errors due to the light and simple constructed mechanical frame. According ...
متن کامل